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AN INVERSE METHOD FOR MEASURING THE 
FLEXURAL WAVE PROPERTIES OF A BEAM 

INTRODUCTION 

Measuring the flexural wave properties of beams is important because these parameters 

significantly contribute to the static and dynamic response of structures. An effective approach 

for obtaining such measurements uses an "inverse" method that typically involves choosing a 

model of the system under study and fitting experimental data to the model by letting the 

unknown parameters be free variables. 

One of the first researchers to examine what is called the inverse problem was Prony,1 who 

developed a technique for estimating the parameters of damped sinusoids from evenly spaced 

measurements. Today, the "Prony methods," which describe the majority of equally spaced 

multisensor experimental techniques, are most notably used by Grosh and Williams,2 who have 

developed a modified version to deconvolve the helical wave spectrum of a point-driven 

cylindrical shell using a simulated experiment. Their procedure first estimates the wavenumbers 

using a root-finding algorithm applied to a characteristic polynomial and then relies on the 

resulting values to find the wave propagation coefficients with a least-squares algorithm. 

Another proponent of the inverse method was Ram,3 whose technique when applied to a 

flexural beam uses eigenvalue and eigenvector data to build a model of a discretized system from 

which mass and stiffness parameters can be extracted. In addition, Linjama and Lahti,4 

Bauman,5 and Mace and Halkyard6 have estimated structural intensity and its corresponding 

properties (usually shear force, transverse velocity, bending moment, and angular velocity) in a 

beam. There is also an inverse technique described by Koss and Karczub7 that uses the wave 

propagation coefficients to estimate the strain field in a beam; however, it does not solve 

explicitly for the flexural wavenumber. In still another study, McDaniel et al.8 show how 

transient loading provides a means to estimate frequency-dependent damping, as well as 

investigate the transfer of data from the spatial domain into the wavenumber domain. Finally, 



McDaniel and Shepard9 have proposed a solution to the inverse problem that is based on the use 

of unevenly spaced measurements and an iterative method to determine flexural wavenumber. 

In the study presented in this report, an inverse method is developed to measure the complex 

flexural wavenumber and the corresponding wave propagation coefficients of a beam that is 

undergoing transverse motion. Based on the transformation of experimental measurements to 

parameter estimates, the technique results in a closed-form solution. The approach is typically 

used for measuring the flexural wave properties of cars, ships, aircraft, bridges, buildings, and 

other common structures that contain beams. 

More specifically, the inverse technique described here combines seven transfer function 

measurements to yield closed-form values of flexural wavenumber and wave propagation 

coefficients at any given test frequency. Numerical simulations are presented to show that the 

method is relatively immune to noise in measurement data. An experiment is also conducted on 

a beam, during which the method is applied to the data to yield the flexural wavenumber and the 

wave propagation coefficients of an actual system. When the estimated transfer function is 

calculated from these estimated parameters and compared to the original measured data, it is 

found that the parameter estimation method is extremely accurate. 

It should be noted that the inverse process can easily incorporate beam parameter 

perturbations, making it an ideal method for design alteration testing. If the beam material 

properties change, the method is simply rerun using the original experimental setup with the new 

beam. Because the process is independent of boundary conditions, it is not necessary to 

duplicate the beam-mounting conditions, which is especially useful when the rotational and 

translational compliance of the mount may change from experiment to experiment. Furthermore, 

the inverse method is independent of beam length, allowing comparisons of beams of varying 

length. Finally, the calculations needed to compute flexural wavenumber parameters can be 

done in seconds, which permits real-time evaluations of beam properties. 



SYSTEM MODEL AND INVERSE SOLUTION 

The system model of the transverse motion of the beam is the Bernoulli-Euler beam 

equation, written as 

EId_U^t1 + pAbd
1u{xt)=^ (1) 

dx dt 

where x is the distance along the length of the beam (m), t is time (s), u is the displacement of the 

beam in the (transverse) j-direction (m), E is the (complex) Young's modulus (N/m ), / is the 

moment of inertia (m ), p is the density (kg/m ), and Ab is the cross-sectional area of the 

beam (m ). Implicit in equation (1) is the assumption that plane sections remain plane during 

bending (or transverse motion). Additionally, Young's modulus, the moment of inertia, the 

density, and the cross-sectional area remain constant along the entire length of the beam. The 

displacement is modeled as a steady-state response in time and is expressed as 

u(x, t) = U(x, co) exp(iötf) , (2) 

where co is the frequency of excitation (rad/s), U(x,co) is the temporal Fourier transform of the 

transverse displacement, and i is the square root of-1.  The temporal solution to equation (1), 

derived using equation (2) and written in terms of trigonometric functions, is 

U(x, co) - A(co) cos[a(co)x] + B(a>) sm[a(co)x] 
(3) + C((o) cosh[a((D)x] + D{(0) sinh[a(ö))x], 

where A(co), B(aj), C(co), and D(aj) are wave propagation coefficients and a{co) is the flexural 

wavenumber given by 

2       11/4 

aW= Ä)     ' (4) 



For brevity, the CO dependence is omitted from the wave propagation coefficients and the flexural 

wavenumber throughout the remainder of the report. Note also that equations (3) and (4) are 

independent of boundary conditions and that the inverse model developed here does not require 

boundary condition specifications or assumptions. 

Equation (3) has five unknowns and is nonlinear with respect to the unknown flexural 

wavenumber. It will be shown that the use of seven independent, equally spaced measurements 

allows the five unknowns to be estimated with closed-form solutions. To begin, seven 

frequency-domain transfer functions of acceleration (or displacement) are measured at some 

location and are then divided by a common reference measurement. Each transfer function is 

collected by two accelerometers placed at different locations on the beam (one may be placed at 

the base of the shaker table). The seven measurements are set equal to the theoretical expression 

given in equation (3). Without loss of generality, the middle measurement location corresponds 

to x = 0. (This location does not necessarily have to be placed at the middle of the beam.) The 

seven equations are written as 

T    = E^± >®l = Acos(3a<5)-Bsin(3aS) + Ccosh(3a<5)-Dsinh(3a<5) , (5) 
V0(co) 

= U_2( 2 ,co) = y4cos(2a5)_Bsm(2aS) + Ccosh(2a8)- Dsinh(2a<5) , (6) 
V0(co) 

= LLi(—^ = Acos(a<5)_Bsin(a<5) + ccosh(a<5)-Dsinh(a<5) , (7) 
V0(0)) 

£70(0^ 

T = Ui( ,co) = Acos(aS^ + 5sin(a<5) + Ccosh(a<5) + £>sinh(a<5) , (9) 
V0(co) 



= ul(2 .<») = Acos(2a5) + Bsin(2a<5) + Ccosh(2a5) + Dsinh(2a<5) , 
V0(a>) 

(10) 

and 

T = U3(3 ,w) = AC0SQa8^ + Bsin(3a5) + cC0Sh(3a5) + Dsinh(3«5) 
VQ((0) 

(11) 

where 5is the sensor-to-sensor separation distance (m) and VQ{(0) is the reference measurement. 

Note that the transfer functions given in equations (5)-(l 1) are dimensionless. 

Equation (7) is added to equation (9) and equation (6) is added to equation (10), yielding 

A cos(a<5) + C cosh(a<5) 
_J\+T=i (12) 

and 

A cos(2a<5) + C cosh(2a<5): Tl+T-2 (13) 

Equations (8), (12), and (13) are combined and manipulated using multiple-angle regular and 

hyperbolic trigonometric expressions to produce 

cosh(a5) cos(a<5) + 'T\+T-\ 
2Tn 

[cosh(a<5) + cos(ad)] } + 
rT2+T_2+2TG^ 

4Tn 
= 0 (14) 

It is noted at this point that a zero-finding algorithm applied to equation (14) is sufficient to solve 

for the unknown flexural wavenumber. However, a closed-form solution of the flexural 

wavenumber is preferred, so further mathematical manipulation is required. Thus, equation (7) 

is subtracted from equation (9), equation (6) is subtracted from equation (10), and equation (5) is 

subtracted from equation (11), resulting in 



B sin(a<5) + D sinh(a<5) = 
Ti-71! 

(15) 

B sin(2a<5) + D sinh(2a<5) Tl-T-2 (16) 

and 

B sin(3a<5) + Z) sinh(3a<5) 
73-7I3 

(17) 

respectively. Equations (15), (16), and (17) are combined and manipulated using multiple-angle 

regular and hyperbolic trigonometric expressions to give 

cosh(a(5) cos(a<S) + 
L2(7i-7L1)_ 

[cosh(a<5) + cos(a5)U + 
r3-713+71-71) 

4(71-71!) 
= 0 . 

(18) 

Combining equations (14) and (18) now results in a binomial expression with respect to the 

cosine function, which is written as 

a cos (aö) + bcos(aS) + c = 0 , (19) 

where 

a = 47i2 - 4712! + 4T_2T0 - 4T0T2 , (20) 

b = 2T_2T_i - 27127i + 2T^T0 - 2T$TX + 2T_{T2 - ITfo + 2T0T3 - 2T_3T0 , (21) 

and 



c = r_2! - Ti  + T2
2 - T*2 + T_3T_X - T_XT3 + T_3TX - TXT3 + 2T0T2 - 2T_2T0 . (22) 

Equation (19) is now solved using 

,   „.     -b±4b2-Aac     . 
cos(a<5) = = (j) , (23) 

2a 

where (j) is typically a complex number. Based on the sign in front of the radical, equation (23) 

contains two solutions to equation (19). Only one solution, however, will have an absolute value 

less than unity as required by the cosine function, and it is this root that is further manipulated. 

The inversion of equation (23) allows the complex-valued flexural wavenumber a to be solved 

as a function of (j) at every frequency in which a measurement is made. The solution to the real 

part of a is 

Re(a) = 

1A         / N    nJt 

—- Arc cos(s) H  n even 
28 26 

—- Arc cos(-s) + —       n odd 
25 26 

(24) 

where 

s = [Re(0)]2 +[Im(0)]2 -V{[Re(0)]2 +[lm(0)]2}2 -{2[Re(0)]2 -2[In#)]2 -l} ,    (25) 

n is a non-negative integer, and the capital A denotes the principal value of the inverse cosine 

function. The value of n is determined from the function s, which is a periodically varying 

cosine function with respect to frequency. That is, while n is 0 at zero frequency, it increases by 

1 every time s cycles through TF radians (180°). It is noted here that increasing the integer n 

allows the estimation process to be used beyond the Nyquist spacing criteria of the sensors 

because n keeps a count of the number of aliasing cycles between the sensors and thus accounts 



for these cycles in the measurement process. After the solution to the real part of a is found, the 

solution to the imaginary part of a is written as 

Im(a)4.ogJ      ReW,-      'mW ■ (26) 
S      e 1 cos[Re(a)(5]    sin[Re(a)<5]| v   ' 

The real and imaginary parts of a from equations (24) and (26), respectively, are combined to 

yield the complex flexural wavenumber. 

Although normally considered less important than the estimate of the flexural wavenumber, 

the wave propagation coefficients are next determined with either an exact or ordinary least- 

squares solution. The exact solution is found by combining equations (12) and (13), which 

results in 

J_2r0cosh(^)-(r1+r_1) 
2[cosh(a<5)-cos(a<5)] ^   ) 

and 

„    (T, + 7Li) - 27b cos(a<5) 
C = — —- . (28) 

2[cosh(a5)-cos(a5)] v   ' 

Combining equations (15) and (16) yields 

B_2(Tl-T_l)cosh(aS)-(T2-T_2) 

4sin(a8)[cosh(ccö) - cos(a5)] 

and 

D_(T2-T-2)-2(Tl-T_1)Cos(aS) 

4 smh(aö)[cosh(aö) - cos(a<5)] 



Equations (27)-(30) thus represent the exact estimates of the complex wave propagation 

coefficients. 

When the second method is used to estimate these coefficients, an ordinary least-squares fit 

is applied to all the data points.2' 6>7 This approach begins with a formulation of the problem 

that uses N (= 7) algebraic equations, where N is the number of sensors. Written in matrix form, 

the expressions are 

Ax = b , (31) 

where 

x = 

cos(3a<5) - sin(3a5) cosh(3a<5) - sinh(3a<5) 

cos(2a<5) - sin(2a<5) cosh(2a5) - sinh(2a<5) 

cos(a<5) - sin(a<5) cosh(a5) - sinh(a5) 

1 0 1 0 

cos(a5) sin(a<5) cosh(a6) sinh(a£) 

cos(2a<$) sin(2a<5) cosh(2a<5) sinh(2a<5) 

cos(3a5) sin(3a<5) cosh(3a<5) sinh(3a<5) 

A' 

B 

C 

D 

? 

(32) 

(33) 

and 

b = 

r-3 
T-2 

T-l 

To 

T\ 

T2 

lT3. 

(34) 



The solution to equation (31) is 

x = (AHA)_1AHb , (35) 

where the superscript H denotes the complex conjugate transpose of the matrix. The least- 

squares method (equations (31)—(35)) is normally considered to be more accurate than the exact 

solution shown in equations (27)-(30) and is therefore used for the calculations in the remainder 

of the report. This increase in accuracy occurs because all seven data points are used to estimate 

the wave propagation coefficients rather than only the five data points used for the exact 

solution. It is noted that the above procedure for estimating flexural wavenumber and wave 

propagation coefficients from the data provides a series of closed-form equations. 

NUMERICAL SIMULATIONS 

The inverse method is first examined with numerical simulations that have varying amounts 

of noise added to the transfer functions. The configuration corresponding to the numerical 

simulations is shown in the appendix, along with the closed-form solution to the wave 

propagation coefficients for the specific boundary conditions of the beam. 

First, a baseline problem is defined that uses a rectangular beam with the following physical 

properties:  E= 1011 (l + 0.05i) N/m2, p = 5000 kg/m3, Ab =0.015 m2,/= 2.81 xlO-5 m4, 

L = 4 m, 8 = 0.5 m, kx = 2.5 x 1010 N/m, and k2 = 5 x 1010 N/m. To study the effects of 

errors, random numbers are added to the transfer functions according to the equation 

Te(a>) = T(co) + e{Re[T(Q))]<ja + ilm[T(co)](jb} , (36) 

where e is the amount of error added to the transfer function and aa and <7£ are random 

numbers with zero mean and a variance of one. The value e is also called the noise value as it 

represents the amount of noise added to the transfer function (or additive noise). 

10 



Figure 1 is a plot of the estimated and actual values of flexural wavenumber a versus frequency 

using an error value of e = 0.02. The actual values (no noise) of the real part of a are shown as a 

solid line, and the estimated values (with noise) of the real part of a are depicted with x's in the 

upper plot. The actual values of the imaginary part of a are shown as a solid line, and the 

estimated values of the imaginary part of a are depicted with o's in the lower plot. 

The effect of measurement error on the accuracy of the calculation of flexural wavenumber 

and wave propagation coefficients can be studied with Monte Carlo simulations. Eleven 

different values of e were used to build the transfer functions and then calculate the flexural 

wavenumber and wave propagation values. Estimation error at each frequency was defined with 

the equation 

fl.       ,      \\ra(<Qm)\-\Ye(COm)\\ 
v(cöm) = -—F ^ , (37) 

max[ya(com),ye((om)\ 

where yis either flexural wavenumber a or one of the wave propagation coefficients A, B, C, or 

D; 6(com) is the estimation error at the müi frequency; the subscript a corresponds to the actual 

(noiseless) value; and the subscript e corresponds to the estimated (calculated) value. Once this 

value is known, it can be summed across M frequencies using 

,    M 

ßj=^yLe((°rn) , (38) 
m=l 

where ßj is the average error for they'th Monte Carlo simulation.  Finally, all the simulations 

can be summed using 

e^JLßj • (39) 

where e is the estimation error using J simulations. 

11 
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Figure 1. Estimated and Actual Values ofFlexural Wavenumber Versus Frequency 
Using a 0.02 Noise Value 
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Table 1 provides a list of transfer function error (e) versus estimation error (e). The 

frequency range of the values used to make this table is between 5 and 500 Hz, with the 

number of frequencies (M) used to calculate the estimation error being 200 and the number of 

simulations (J) for each value of e being 50. Errors less than 0.0001 are recorded as 0. 

Table 1. Transfer Function Error (e) Versus Estimation Error (e) 

Transfer 

Function 

Error (e) 

Estimation 

Error (e) 

for a 

Estimation 

Error (e) 

for ,4 

Estimation 

Error (e) 

forB 

Estimation 

Error (e) 

forC 

Estimation 

Error (e) 

forD 

0 0 0 0 0 0 

0.005 0.048 0 0.0013 0.0009 0.0043 

0.010 0.049 0 0.0021 0.0010 0.0046 

0.015 0.050 0 0.0023 0.0014 0.0046 

0.020 0.051 0 0.0027 0.0015 0.0048 

0.025 0.051 0 0.0026 0.0016 0.0049 

0.030 0.052 0 0.0031 0.0022 0.0049 

0.035 0.054 0.0002 0.0033 0.0021 0.0049 

0.040 0.055 0.0002 0.0037 0.0022 0.0049 

0.045 0.057 0.0002 0.0038 0.0023 0.0049 

0.050 0.059 0.0001 0.0039 0.0024 0.0049 

Figure 2 shows a plot of flexural wavenumber estimation error (0) versus frequency for a 

single simulation (J= 1) using a known transfer function error of e = 0.02. This numerical error 

analysis demonstrates that the process produces a very small error in the estimation of flexural 

wavenumber. Note that the larger estimation errors tend to occur near the lower frequency 

values. 

13 
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Figure 2. Flexural Wavenumber Estimation Error (6) Versus Frequency 
for a Single Simulation Using a 0.02 Noise Value 

EXPERIMENT 

An experiment was conducted to test the validity of the inverse method when it was applied 

to actual laboratory data. A rectangular aluminum beam with the following properties was 

mounted to a shaker table using rigid aluminum mounts at each end: Ab = 0.0077 m , 

7=6.66xl0~6 m4, 1=1.07 m, and 5=0.133 m. 

It is important to note that this type of mounting system will not correspond to a translational 

spring boundary condition but rather to a combination of translational and rotational spring 

boundary conditions that are acting together at each end of the beam. Because the inverse 

method is independent of boundary conditions, this type of unknown and mixed boundary 

condition will not adversely impact the measurement process. 

14 



During the measurement process, nine equally spaced accelerometers were attached to the 

beam. The first accelerometer served as the reference measurement to the middle seven 

accelerometers, which correspond to equations (5)-(l 1). The ninth accelerometer was unused. 

Data taken in the time domain and transferred into the frequency domain using a Fourier 

transform were collected by the accelerometers from 4 to 400 Hz in swept-sine mode. 

Figure 3 is a plot of the modeled and estimated values of flexural wavenumber a versus 

frequency. The modeled values of the real part of a are depicted with a solid line, and the 

estimated values are shown as x's in the upper plot. The modeled values of the imaginary part of 

a are depicted with a solid line, and the estimated values are shown as o's in the lower plot. The 

modeled values were determined by assuming that the aluminum bar had a Young's modulus of 

7.31 x 1010 (1 + 0.03i) N/m2 and a density of 2700 kg/m3 and then calculating the (modeled) 

wavenumber with equation (4). It is noted that at low frequency there is some disagreement 

between the model and the estimate, which has been well explained by McDaniel and Shepard.9 

Figures 4-7, which show plots of the estimated wave propagation coefficients A, B, C, and D 

versus frequency, respectively, are calculated using the least-squares fit from equations 

(31)-(35). In all four figures, the upper plot is the magnitude and the lower plot is the phase 

angle. 

In the final analysis, the method compares the measured data with the model, which is 

constructed using the estimated parameters. Figure 8 depicts the measurement and the model 

versus frequency at the sixth sensor (x = 28), with the upper plot showing magnitude and the 

lower plot showing phase angle. It should be noted that the almost exact agreement between the 

measurement and the model is expected because the estimated parameters are based entirely on 

the measured data. 

15 
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Figure 3. Estimation ofFlexural Wavenumber Versus Frequency for Experiment 
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CONCLUSIONS 

This report has derived an inverse method to measure the complex flexural wavenumber and 

wave propagation coefficients of a beam. The new approach obtains seven measured transfer 

functions by vibrating the beam transversely with any set of corresponding boundary conditions. 

These measurements are then combined to yield closed-form solutions of the beam parameters. 

Numerical simulations have shown that this approach is relatively immune to noise that has been 

added to the transfer function, and an experiment has validated the effectiveness of the technique 

when it is applied to laboratory data. 
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APPENDIX — CLOSED-FORM SOLUTION USED FOR 
THE NUMERICAL SIMULATIONS 

The configuration used for the numerical simulations is a beam that has been mounted at 

each end to springs attached to a shaker table, as shown in figure A-l. With the middle of the 

beam used as the coordinate system origin, the shaker table generates a transverse structural 

input using boundary conditions that are modeled as 

d2»™=,, (A-l) 
dx2 

EI d u{ 1/2,0 = . ^u(_L n^_ w(/)] ? (A_2) 

dx3 

^/2-'>=0, (A-3) 
dx1 

and 

- EId "(Z/ 2; f) = k2 [u(L / 2,0 - w(t)] , (A-4) 
dx3 

where 

w(0 = WQ {co) exp(io>0 . (A-5) 

Inserting equation (3) from the main text into equations (A-l), (A-2), (A-3), (A-4), and (A-5) 

yields the solution to the wave propagation coefficients. Inserting these solutions back into 

equation (3) gives the displacement of the system, which is sometimes called the forward 

solution. The wave coefficient A is 

A-l 
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The wave coefficient B is 

5 = £7 
5 B 

(A-9) 

where 
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The wave coefficient C is 

C = 
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(A-12) 
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The wave coefficient D is 

D = 
D7 

B B 
(A-14) 

where 
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These coefficients are used for the numerical simulations in the main text. 
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Figure A-l. Beam with Two Springs Attached to the Shaker Table 
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